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SUMMARY

The application of standard multigrid methods for the solution of the Navier±Stokes equations in complicated
domains causes problems in two ways. First, coarsening is not possible to full extent since the geometry must be
resolved by the coarsest grid used. Second, for semi-implicit time-stepping schemes, robustness of the
convergence rates is usually not obtained for convection±diffusion problems, especially for higher Reynolds
numbers. We show that both problems can be overcome by the use of algebraic multigrid (AMG), which we
apply for the solution of the pressure and momentum equations in explicit and semi-implicit time-stepping
schemes. We consider the convergence rates of AMG for several model problems and demonstrate the
robustiness of the proposed scheme. # 1998 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 26: 281±301 (1998).

KEY WORDS: Navier±Stokes equations; SIMPLE algorithm; algebraic multigrid methods

1. INTRODUCTION

In this paper we consider a fast solver for the numerical simulation of two- and three-dimensional

viscous, non-stationary, incompressible ¯uid ¯ow problems in complicated geometries such as arise

in the study of porous medium ¯ow on a microscale level, in multi-connected technical devices such

as cooling or heating systems or in a vast number of biological and medical ¯ow simulations (see

Figure 1). Also for free boundary problems where the domain changes in time, partial differential

equations in rather complicated geometries have to be solved in each time step.

If we use an explicit time discretization such as the forward Euler scheme, most of the

computational effort has to be spent in the solution of the Poisson equation in a pressure correction

step. Semi-implicit discretization schemes such as the backward Euler scheme allow larger time

steps, but here, besides the Poisson equation, we additionally obtain convection±diffusion equations

for each component of the velocity.

Multigrid methods are often-used solvers for the arising algebraic equations. However, for

convection-dominated convection±diffusion problems such as appear for high Reynolds numbers,

standard multigrid methods show a lack of robustness with respect to the convergence behaviour.
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This can be overcome by some special techniques for the construction of the restriction and coarse

grid operators and the use of ILU smoothers.2±6 This only works well in two spatial dimensions. The

second drawback is that the geometry of the domain must be resolved on the coarsest level of

discretization used in the multigrid method. Thus the domain is not allowed to have a complicated

structure, otherwise there would be many unknowns on the coarsest level and an iterative scheme

would need too many smoothing steps on the coarsest grid to maintain good convergence rates,

whereas direct solvers for the coarse grid equation are too expensive. Furthermore, it is not possible

to use grid transformation techniques to transform a non-rectangular physical domain into a

rectangular computational domain if the domain is too complicated. For some other concepts on the

application of multigrid methods to problems on complex domains, see References 7±10.

In the 1980s, algebraic multigrid methods were introduced. They do not make use of any geometric

information on the grid. Here the coarse grid points and the restriction and interpolation operators are

constructed by considering only the linear system and the coupling between the different unknowns.

In numerical experiments, algebraic multigrid has been shown to possess advantages over

conventional multigrid methods with respect to robustness.11,12 Their convergence rates are bounded

by a constant C < 1 independent of the PDE under consideration, also for problems with strongly

varying coef®cient functions or singular perturbed problems, e.g. diffusion problems or convection±

diffusion problems with strong anisotropy or strong convection respectively. Robust convergence

rates are also obtained for problems on domains with complicated geometry, even for the additive

variant of AMG.13

We apply AMG to the equations arising from explicit and semi-implicit time discretizations of the

Navier±Stokes equations and present the results of numerical experiments where we study the

dependence of the convergence rates on the geometry, the Reynolds number and the number of

unknowns. For other concepts on the application of AMG to the Navier±Stokes equations, see

References 14±16.

2. DISCRETIZATION OF NAVIER±STOKES EQUATIONS

2.1. Navier±Stokes Equations

We consider the time-dependent, incompressible Navier±Stokes equations for the velocity ~u and

the kinematic pressure p which is de®ned as the real pressure divided by the density, in an arbitrary

bounded domain O � R2 or R3:

~ut ÿ
1

Re
D~u� ~u � H~u� Hp � ~g; �1�

H � ~u � 0: �2�

Figure 1. Examples of ¯ow problems in ®xed complicated geometries: left, a river system; right, a porous medium (cross-
section of sandstone)1
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Equation (1) is the momentum equation and equation (2) is the continuity equation. Re denotes the

Reynolds number and ~g is the body force, e.g. gravity. In addition, we need suitable initial conditions

~ujt�0 � ~u0 and boundary conditions of in¯ow, out¯ow, slip or no-slip type. This means that either the

velocity itself �~ujG � ~uG� or its normal derivative ��@~u=@n�jG � �@~u=@n�G, where ~n denotes the unit

outer normal vector at the boundary G) is speci®ed at the boundary. For a detailed description of the

different boundary types, see e.g. References 17 and 18 (pp. 12ff).

The initial condition must satisfy H � ~u0 � 0 and ~u0jG � ~n � ~uGjt�0 � ~n19. An initial velocity ®eld ~u0

satisfying H � ~u0 � 0 can be obtained by solving the potential equation

DF � 0; HFjG � ~n � ~uGjt�0 � ~n �3�

and setting

~u0 :� HF: �4�

2.2. Discretization in space

For space discretization we use ®nite differences on a staggered grid with equidistant orthogonal

grid lines, which was ®rst introduced by Harlow and Welch.20 The convective parts are discretized by

¯ux blending, i.e. a mixture of central and upwind differences, namely the donor±cell scheme, such

that the discretization does not suffer from instabilities.17* If O is non-rectangular, we approximate O
by a domain Oh such that the boundary of Oh coincides with grid lines. Then we imbed Oh in a

rectangular domain ~O � Oh. Thus ~O can be divided into the set of ¯uid cells representing Oh and a set

of boundary cells (see Figure 2).

Details of the discretization in space and of the discretization of the boundary conditions can be

found in References 17 and 18 (Chap. 3).

Figure 2. Imbedding of a non-rectangular domain

* There exist several other stable discretization schemes for convection±diffusion problems, e.g. streamline and upwind
diffusion methods21,22 or Petrov±Galerkin methods.
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2.3. Discretization in time

For time discretization we use either the forward or the backward Euler scheme.y The explicit

forward Euler scheme with time step dt :� tn�1 ÿ tn leads to the following coupled problem: ®nd

~u�n�1�, p�n�1� such that

~u�n�1� � dtHp�n�1� � ~u�n� � dt
1

Re
D~u�n� ÿ ~u�n� � H~u�n� � ~g�n�

� �
; �5a�

H � ~u�n�1� � 0; �5b�

where the index �n� denotes velocity and pressure at time tn.

For its solution we ®rst choose a tentative velocity ®eld

~u* :� ~u�n� � dt
1

Re
D~u�n� ÿ ~u�n� � H~u�n� � ~g�n�

� �
�6�

and then obtain ~u�n�1� by adding the gradient of the pressure in the new time step:

~u�n�1� � ~u*ÿ dtHp�n�1�: �7�

Replacing ~u�n�1� by the right-hand side of (7) in the continuity equation (5b) leads to a Poisson

equation for the pressure:

Dp�n�1� � 1

dt
H � ~u*: �8�

Thus we ®rst solve (8) and then compute ~u�n�1� by means of (7). Suitable boundary conditions are

homogeneous Neumann conditions @p=n � 0 for the pressure and ~u* � ~u�n�1� for the tentative

velocity ®eld.

For reasons of stability of the time-stepping scheme, we must observe some restrictive conditions

on the step size dt, the so-called Courant±Friedrichs±Lewy conditions, which guarantee that no

particle of the ¯uid can pass more than one grid line in any direction in one time step, i.e.

max
x2O
jui�x�jdt < dxi; i � 1; 2; �3�: �9�

Larger time steps are possible if we use an implicit time-stepping scheme such as the backward Euler

scheme. Here we apply a semi-implicit discretization of the convection term to avoid non-linearities

in the algebraic equations. Thus we end up with the following coupled problem: ®nd ~u�n�1�, p�n�1�

such that

~u�n�1� � dt ÿ 1

Re
D~u�n�1� � ~u�n� � H~u�n�1� � Hp�n�1�

� �
� ~u�n� � dt~g�n�1�; �10a�

H � ~u�n�1� � 0: �10b�

yThere also exist more elaborate time-stepping schemes, even of higher order, e.g. the Crank±Nicolson scheme or the
fractional step y-scheme.23 Note that also in those schemes, basically Poisson equations and convection±diffusion equations
have to be solved.
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Again we compute a tentative velocity ®eld, now as the solution of the convection±diffusion

equation*

~u*� dt ÿ 1

Re
D~u*� ~u�n� � H~u*� Hp�n�

� �
� ~u�n� � dt~g�n�1�: �11�

These velocities do not satisfy the continuity equation. Thus we have to compute some correction

terms ~u0 and p0 such that

~u�n�1� � ~u*� ~u0; p�n�1� � p�n� � p0: �12�
Subtracting (11) from (10a) gives us an equation for ~u0, i.e.

~u0 � dt ÿ 1

Re
D~u0 � ~u�n� � Hu0 � Hp0

� �
� 0; �13�

or, using the abbreviation

S�~u0� :� ÿ 1

Re
D~u0 � ~u�n� � H~u0; �14�

we obtain

~u0 � dtS�~u0� � dtHp0 � 0: �15�
Depending on the speci®c choice of how to approximate S�~u0�, there exist different numerical

methods in the literature.

One is to approximate S�~u0� by zero. This implies that the values of ~u0 change very little in space.

Then we put (15) into the continuity equation and obtain a Poisson equation for the pressure

correction:

Dp0 � 1

dt
H � ~u*: �16�

Again, homogeneous Neumann boundary conditions are used for the pressure correction as for the

pressure in the scheme above.

This approach is used for example in References 24 and 25, where this scheme is called SIMPLE,

as well as in Reference 26, where this scheme is derived from the SMAC (simpli®ed marker and cell)

method.27 In the following we call this scheme SMAC.

In the original SIMPLE scheme introduced by Patankar and Spalding,28 the space discretization of

the linear operator S�~u0� is written as the product of a matrix A, which depends on the velocities in the

previous time step, and the velocity correction ~u0h, i.e.

Sh�~u0h� � A�~u�n�h �~u0h; �17�
and (15) becomes

�I � dtA�~u�n�h ��~u0h � dtHhp0h � 0: �18�
Furthermore, A�~u�n�h � is replaced by the diagonal matrix D�~u�n�h � :� diag�A�~u�n�h ��. Thus ~u0h is assumed to

be small and the off-diagonal elements are neglected. Equation (18) gives

~u0h � ÿdt�I � dtD�~u�n�h ��ÿ1Hhp0h: �19�

* Note that this is a system of decoupled convection±diffusion equations for each component of the tentative velocity ®eld ~u*.
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If we replace ~u0h by the right-hand side of (19) in the continuity equation, we end up with an equation

for p0h which depends on ~u�n�h :

Hh � �I � dtD�~u�n�h ��ÿ1Hhp0h �
1

dt
H � ~uh*: �20�

Here relaxation parameters are often used for stationary problems to get better convergence results.

The SIMPLEC algorithm29 assumes that ~u0h is nearly constant in a certain surrounding and uses

lumping of the matrix I � dtA�~u�n�h � in (18). This means that we replace the matrix I � dtA�~u�n�h � by a

diagonal matrix where the diagonal elements are the sums of all elements of one row.*

Moreover, there exist schemes such as SIMPLER30 which use an inner iteration of at most two

cycles for the solution of the coupled problem (10a,b). One cycle consists of the computation of the

tentative velocity ®eld by (11) using the pressure compound in the previous cycle and the

computation of a pressure correction by the continuity equation.

Of course, this is only a small selection of schemes to handle the pressure±velocity coupling. We

want also to mention the projection scheme of Chorin31 and Temam,32 the PISO method of Issa33 and

the work done by van Kan,34 among others. For a comparison of some schemes, see Reference 35.

For all these different numerical schemes we basically have to solve Poisson or Poisson-like

equations for the pressure or the pressure correction and convection±diffusion equations for each

component of the velocity vector. In the following we will consider the solution of these equations by

algebraic multigrid.

2.4. Transport equation

Besides the Navier±Stokes equations, we also consider the scalar transport equation

ct ÿ lDc� ~u � Hc � 0; �21�

with the diffusion coef®cient l and the velocity ®eld ~u.

This describes for example the transport of a chemical substance with concentration c. Setting

c :� T , (21) is the energy equation for the temperature T. Here, for reasons of simplicity, we omit the

recoupling of the concentration or temperature respectively on the momentum equations, which can

be modelled for example using the Boussinesq approximation.36±38

Time discretization with the backward Euler scheme gives

c�n�1� � dt�ÿlDc�n�1� � ~u � Hc�n�1�� � c�n�; �22�

where ~u is either an already computed stationary velocity ®eld or ~u�n�1�. Equation (22) is equivalent

to the momentum equation (11) for the tentative velocity ®eld ~u*. The only differences are the right-

hand side and the diffusion coef®cient. For the discretization in space we again use the staggered grid

and ®nite differences with a mixed central=upwind discretization of the convective term. For details,

see Reference 18 (pp. 134ff).

* Note that this approach is equivalent to the SMAC approach if we use conventional upwind discretizations instead of the
donor±cell scheme.
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3. ALGEBRAIC MULTIGRID METHOD AND ITS APPLICATION TO NAVIER±STOKES

EQUATIONS

3.1. Algebraic multigrid

Algebraic multigrid methods for the solution of a linear system

aM uM � fM

on a ®ne grid level M were introduced in References 11, 12, 39 and 40. Here, ®rst a grid is set up on

the next coarser level by using algebraic information from aL �L4M � and then an appropriate

interpolation scheme pL
Lÿ1 is de®ned. After computing

aLÿ1 :� �pL
Lÿ1�TaLp

L
Lÿ1 �23�

via the Galerkin identity, the process is repeated until a suf®ciently coarse level system is obtained.

AMG is necessarily less ef®cient than highly specialized geometric multigrid solvers for elliptic

problems on uniform rectangular grids. However, for more complicated cases with general domains,

AMG has been shown to behave in a robust manner and thus performs quite favourably in terms of

operation count and CPU time. AMG also works for problems where geometric multigrid methods

are impossible to design. AMG uses no sophisticated smoother, but only standard Gauss±Seidel. The

robustness of AMG is obviously the merit of the appropriately chosen grid-coarsening strategy and

the associated interpolations.

For algebraic multigrid the grids should be nested as for conventional multigrid methods, but they

need not be uniform. In fact, uniformity, if given for the ®nest grid, is in general not maintained in the

process. We will nevertheless start with ®ne level discretizations based on the regular grid Oh. In the

following we will denote the set of indices of the grid points corresponding to level L by NL and we

demand that the index sets be nested as

N1 � N2 � � � � � NMÿ1 � NM :

To each grid point of level L there corresponds an unknown of the solution vector uL with the same

index.

For an AMG algorithm the sequence of matrices aL must be constructed algebraically. The

aLÿ1; L � M ; . . . ; 2, are computed successively by selecting a subset of the unknowns of the level L

system by evaluating the strength of the connections between the unknowns in aL. The basis for our

implementation is the AMG method described in References 11 and 12.

According to the well-known variational principle, it is best for a given interpolation to determine

the coarse grid discretization via Galerkin coarsening. All error components lying in the range of the

interpolation are then eliminated by a single coarse grid correction. In multigrid theory one has to

take care that those error components, which are persistent to the smoother, are well represented on

coarser grids.

The effect of Gauss±Seidel iterations on symmetric positive de®nite matrices aM is well

understood and can be used to guide the construction of the coarser level systems aL for

L � M ÿ 1; . . . ; 1. Gauss±Seidel smoothing stalls whenever the error eit
L :� uit

L ÿ uL in iteration it is

large in comparison with the residual rit
L :�aLuit

L ÿ fL.

Because aLeL � rL, we have aLeL � 0 then. Alternatively, for a single unknown,

�eL�i � ÿ
1

�aL�ii
PnL

j�1
j 6�i

�aL�ij�eL�j:
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This sum may be split into the error components visible on the coarse grid (and thus eliminated by a

single coarse grid correction step) and those which are not, i.e.

�eL�i � ÿ
1

�aL�ii
P
j2CL
j 6�i

�aL�ij�eL
�j �

P
j2FL
j 6�i

�aL�ij�eL�j

0@ 1A: �24�

Here CL :� NLÿ1 and FL :� NLnNLÿ1. If the second sum could be eliminated on all levels, AMG

would be a direct solver. In this case the ideal interpolation weights would be given by

�pL
Lÿ1eLÿ1�i �

�eLÿ1�i; i 2 CL;

ÿ 1

�aL�ii
P
j2CL
j 6�i

�aL�ij�eLÿ1�j; i 2 FL:

8>><>>: �25�

Unfortunately, this ideal assumption can hardly be ful®lled when we want a decrease in the number

of grid points on each level. Nevertheless, we try to minimize the second sum in (24) by choosing the

coarse grid points CL :� NLÿ1 from NL appropriately.

We will brie¯y review the coarse grid selection part of AMG as introduced in References 11 and

12. For reasons of simplicity the level index L is omitted. Here we have to de®ne the set of strongly

coupled neighbours Si of a point i. Let

d�i; I � :� 1

max
k 6�i
fÿaikg

P
j2I

ÿaij;

where I is any subset of N, and

Si :� fj 2 N jd�i; fjg�5ag; Si;T :� fj 2 N ji 2 Sjg: �26�
The partitioning into ®ne and coarse grid points is performed in two phases on each level. There we

select coarse grid points in such a manner that as many strong couplings as possible are taken into

consideration.

3.2. Selection of coarse grid points: set-up phase I

1. Set C �1 and set F �1
2. While C [ F 6� N do

Pick i 2 Nn�C [ F� with maximal jSi;Tj � jSi;T \ Fj
If jSi;Tj � jSi;T \ Fj � 0

then set F � NnC
else set C � C [ fig and set F � F [ �Si;TnC�

endif

The measure jSi;Tj � jSi;T \ Fj is purely heuristical. The ®rst term is associated with the total

number of strongly coupled neighbours, the second one with the number of strongly coupled

neighbours which are in F. Domains with the same discretization stencil for most nodes (typically

inner nodes) tend to have the same value of the measure jSi;Tj � jSi;T \ Fj for them. Note that the

action to pick an index in step 2 of the above algorithm is non-deterministic and allows different

implementations, depending on the chosen underlying data structures; see also Reference 41.

Furthermore, using dynamic data structures and incremental techniques, it is possible to implement

the overall set-up algorithm (i.e. phases I and II) to need a number of operations proportional to the
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number of ®ne grid unknowns. Further improvements should be possible if one were to handle nodes

situated next to the boundary of the domain and inner nodes differently.

In a second phase the ®nal C-point choice is made.

3.3. Selection of coarse grid points: set-up phase II

1. Set T �1
2. While T � F do

Pick i 2 FnT and set T � T [ fig
set ~C �1 and set Ci � Si \ C

set Fi � Si \ F

While Fi 6�1 do
Pick j 2 Fi and set Fi � Finfjg
If d�j;Ci�=d�i; fjg�4b

then if j ~Cj � 0

then set ~C � fjg and set Ci � Ci [ fjg
else set C � C [ fig, set F � Fnfig and goto 2

endif
endif

set C � C [ ~C, set F � Fn ~C:

This second algorithm has to make sure that each point in F is strongly coupled directly with points

in C or at least with points in F, which are strongly coupled with points in C. Again, the strategy to

force the set ~C to contain at most one element is purely heuristic. The parameters a and b which

control the coarsening algorithm must be given by the user.

After the points NL were divided into the sets FL and CL, we could de®ne the interpolation as given

in (25). In the algorithm of Ruge and StuÈben11,12 a little more sophisticated interpolation is used,

which gives better results in numerical experiments:

�pL
Lÿ1eLÿ1�i :�

ÿ

�e
Lÿ1
�i; i 2 CL;P

j2Ci
L

��aL�ij � cij��eLÿ1�j
�aL�ii � cii

; i 2 FL;

8>>>>><>>>>>:
�27�

where

cij :� P
k=2Ci

L
k 6�i

�aL�ik�aL�kj

�aL�ki �
P

l2Ci
L

�aL�kl

:

Once the interpolation matrix pL
Lÿ1 is constructed, the system matrix aLÿ1 is determined by the

Galerkin identity (23). Then the coarsening proceeds recursively until the number of remaining

unknowns equals one.

3.4. Application to Navier±Stokes equations

In our algorithm we apply AMG for the solution of the potential equation for the initial velocity

®eld (3) and of the Poisson equation for the pressure (8) in the explicit code or the pressure correction

p0 (16) in the SMAC code respectively. For these equations, a single set-up step is suf®cient which
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consists of the set-up phases I and II in the initializing phase of the algorithm, because the equations

differ only in the boundary values and the right-hand side, whereas the set-up depends only on the

matrix of the linear system. For the SIMPLE scheme we would need a set-up step for the equation for

the pressure correction (20) in each time step, because this equation depends on the velocities of the

previous time step. The same holds for the SIMPLEC or SIMPLER scheme.

Moreover, we apply AMG to the momentum equation for ~u* (11) and to the transport equation

(22). Here we have to solve convection±diffusion problems where the convection dominates for high

Reynolds numbers or low diffusion coef®cients. The momentum equations change from time step to

time step, because the time-dependent velocities ~u�n� enter the scheme in the convective term. Thus

we would need a set-up phase in each time step.

In our numerical experiments we also tried a sort of adaptive set-up strategy for the momentum

equations. This means that we only apply the quite expensive set-up step if the number of AMG V-

cycles exceeds a certain given number tolit to reduce the residual below e. Otherwise, we just keep the

coarse grid and the interpolation operator of the previous time step. Thus the problems on the coarser

grids are not exactly the problems related to the ®ne grid equation, but if the velocities do not change

too much from one time step to the next, the coarse grid problem based on previous velocities might

still produce suf®cient coarse grid correction terms for the ®ne grid equations with the new velocities.

4. NUMERICAL RESULTS

In our numerical experiments we concentrate on the robustness of the algebraic multigrid method

applied to the Navier±Stokes equations with respect to the geometry, the number of unknowns and

the diffusion coef®cient in the convection±diffusion equation. The accuracy of the discretization

scheme is shown in Reference 18 for several examples such as the ¯ow over a backward-facing step

and the ¯ow past an obstacle. Moreover, the AMG solver might be applied to some enhanced

discretization schemes too.

In all our experiments we used a multigrid V-cycle with one pre- and post-smoothing step. As

smoother we use Gauss±Seidel relaxation. We reduced the L2-norm of the residuals to values below

10712 and always measured the reduction rate, i.e. the quotient of the L2-norms of the residuals of

two successive iterates,

rit :� kritk2

kritÿ1k2
;

in the last iteration when the stopping criterion was reached. The AMG parameter b is always set to

0�35, whereas a is varied as given in the tables.

4.1. Dependence of convergence on geometry

To test the behaviour of our algorithm for complicated geometries, we consider a channel ¯ow

where several cubic obstacles are inserted in the channel, namely one, 262, 464, 868 and 16616

cubes (see Figure 3). We used a 256664 grid. The size of the cubes is chosen such that the sum of

their volumes is constant for each test case.

First we study the potential equation (3) for the initial velocity ®eld. Note that the equations for the

pressure (8) in the explicit time-stepping scheme and the pressure correction (16) in the SMAC

scheme are also Poisson equations with Neumann boundary conditions. They differ only in the right-

hand side and the type of boundary conditions (inhomogeneous=homogeneous). Thus the

convergence properties of AMG applied to those two equations are basically the same as for the

potential problem (3).
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In Table I we see that the reduction rate depends strongly on the parameter a, which determines the

set of strongly coupled neighbours of a point (see (26)). The best values (underlined) are obtained for

a < 0�1. There the reduction rates were between 0�08 and 0�18. The minimal values for each

geometry are always below 0�12, but they depend on a in a way which is not yet fully understood.

Thus we can say that our algorithm is robust with respect to the geometry, but a must be chosen

carefully. The number of coarse grid points is nearly the same for all cases, independent of the

number of obstacles and the value of a. Thus the time which must be spent on one V-cycle is always

in the same range.

We believe that the relatively bad reduction rates for larger values of a are caused by the Neumann

boundary conditions or the semide®niteness of the linear system. Also, ®xing one point of the

boundary data and thus obtaining a de®nite system does not improve the convergence rates. With

pure Dirichlet conditions instead, we obtained much better reduction rates, also for large values of a,

as can be seen in Table II.

The same results are obtained in the 3D case, where we considered a channel with 64632632

grid cells and between zero and ®ve obstacles in each direction (see Table III).

4.2. Dependence of convergence on grid size

Next we study the dependence of the reduction rates on the grid size. As test problem we took the

example of Section 4.1 with one obstacle and varied the number of cells. We show the reduction rates

for different values of a in Table IV (2D and 3D).

Table I. Dependence of reduction rate on number of obstacles and a; 2D potential equation with Neumann
conditions

Obstacles a � 1� 10ÿ6 1� 10ÿ4 0�01 0�02 0�03 0�05 0�1 0�15 0�25 0�45 0�75 0�95

0 0�108 0�112 0�094 0�100 0�078 0�104 0�126 0�149 0�206 0�340 0�168 0�341
1 0�154 0�139 0�136 0�129 0�157 0�108 0�164 0�166 0�289 0�216 0�295 0�662
262 0�114 0�133 0�134 0�135 0�116 0�121 0�143 0�178 0�212 0�351 0�444 0�764
464 0�142 0�126 0�110 0�129 0�111 0�124 0�176 0�169 0�193 0�352 0�509 0�789
868 0�148 0�118 0�116 0�152 0�161 0�161 0�150 0�202 0�253 0�463 0�468 0�774
16616 0�117 0�138 0�174 0�112 0�122 0�147 0�173 0�136 0�251 0�372 0�488 0�838

Figure 3. Test problem for dependence on geometry; ¯ow from left to right
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Table III. Dependence of reduction rate on number of obstacles and a 3D potential equation with Neumann
conditions

Obstacles a � 1� 10ÿ6 1� 10ÿ4 0�01 0�02 0�03 0�05 0�10 0�15 0�25 0�45 0�75 0�95

0 0�086 0�101 0�102 0�088 0�080 0�170 0�119 0�164 0�275 0�390 0�438 0�486
1 0�140 0�160 0�116 0�134 0�131 0�116 0�136 0�178 0�309 0�480 0�551 0�687
26262 0�190 0�188 0�133 0�134 0�127 0�154 0�121 0�167 0�346 0�447 0�559 0�694
36363 0�160 0�109 0�117 0�099 0�124 0�170 0�139 0�300 0�491 0�616 0�690 0�690
46464 0�094 0�112 0�147 0�110 0�121 0�217 0�152 0�189 0�334 0�541 0�583 0�706
56565 0�103 0�139 0�111 0�112 0�115 0�133 0�149 0�201 0�289 0�396 0�533 0�762

Table IV. Dependence of reduction rate on grid size and a; potential equation with Neumann conditions, 2D and
3D

Grid a � 1� 10ÿ6 1� 10ÿ4 0�01 0�02 0�03 0�05 0�1 0�15 0�25 0�45 0�75 0�95

64616 0�095 0�095 0�064 0�104 0�137 0�128 0�095 0�129 0�147 0�251 0�108 0�557
128632 0�084 0�090 0�133 0�147 0�115 0�128 0�161 0�153 0�157 0�362 0�099 0�658
256664 0�154 0�139 0�136 0�129 0�157 0�108 0�164 0�166 0�289 0�216 0�295 0�662
5126128 0�142 0�115 0�144 0�144 0�312 0�137 0�151 0�257 0�259 0�443 0�263 0�727

32616616 0�086 0�104 0�095 0�109 0�137 0�148 0�124 0�123 0�156 0�229 0�434 0�723
64632632 0�140 0�160 0�116 0�134 0�131 0�116 0�136 0�178 0�309 0�480 0�551 0�687
96632632 0�137 0�136 0�159 0�160 0�149 0�145 0�180 0�176 0�182 0�533 0�583 0�638

Table V. Dependence of reduction rate on grid size and a; potential equation with Dirichlet
conditions, 2D and 3D

Grid a � 1� 10ÿ4 0�05 0�25 0�45 0�85

64616 0�062 0�050 0�052 0�039 0�017
128632 0�070 0�057 0�075 0�048 0�023
256664 0�088 0�066 0�095 0�061 0�035
5126128 0�024 0�068 0�069 0�086 0�076

32616616 0�0384 0�0420 0�0383 0�0437 0�0623
64632632 0�0518 0�0510 0�1050 0�0870 0�1622
96632632 0�0571 0�0510 0�0822 0�2992 0�2991

Table II. Dependence of reduction rate on number of obstacles and a 2D
potential equation with Dirichlet conditions

Obstacles a � 1� 10ÿ4 0�05 0�25 0�45 0�85

0 0�081 0�079 0�099 0�101 0�035
161 0�088 0�066 0�095 0�061 0�035
262 0�095 0�067 0�101 0�089 0�033
464 0�090 0�080 0�100 0�058 0�033
868 0�080 0�079 0�100 0�081 0�149
16616 0�082 0�079 0�098 0�128 0�091
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We have a strong dependence on a, with the best results obtained for a < 0�1. Here the

convergence rates increase slightly for larger grids.

However, we consider the potential equation with Dirichlet conditions (Table V), we obtain

convergence rates which are in the same range, independent of the grid size. Thus the relatively bad

convergence behaviour must be caused by the Neumann conditions.

4.3. Dependence of convergence on diffusion coef®cient

Now we consider the dependence of the convergence properties of the AMG algorithm for

convection±diffusion equations such as the momentum equations (11) as they appear in the SMAC

and SIMPLE schemes and the transport equation (21). This is also a problem where standard

multigrid methods fail. As test problem we take the ¯ow over a backward-facing step with Reynolds

number Re � 500 (see Figure 4). Here two recirculating regions appear.

We consider the convergence behaviour of our AMG algorithm for the transport equation (21) with

Dirichlet boundary conditions on the left side and Neumann (adiabatic) boundary conditions on the

remaining three sides. In 2D we employed a mesh with 300675 cells and in 3D we used an

80616616 grid. As already mentioned, the time-discrete transport equation (22) is of the same type

as the momentum equations for each component of the tentative velocity (11). The results are shown

in Tables VI and VII. For 2D we also present the complexity of the coarse grids (Comp.), i.e. the

number of unknowns on all levels divided by the number of unknowns on the ®nest level, and the

connectivity of the coarse grid operators (Conn.), i.e. the number of non-zero entries in the matrices

on all levels divided by those on the ®nest level. Thus both numbers indicate the work time necessary

for one multigrid iteration.

Figure 4. Flow over a backward-facing step; streamlines, Re � 500

Table VI. Dependence of reduction rate (red.), complexity (Comp.) and connectivity (Conn.) on diffusion
parameter l and a; transport equation, backward-facing step, 2D

l a � 1� 10ÿ4 0�01 0�05 0�15 0�25 0�45 0�85

1 Red. 0�081 0�062 0�043 0�091 0�079 0�089 0�152
Comp. 1�874 2�035 1�831 1�827 1�887 1�900 1�944
Conn. 4�368 5�349 3�360 2�752 2�968 3�024 3�083

1072 Red. 0�025 0�040 0�032 0�045 0�066 0�105 0�406
Comp. 1�884 1�924 1�995 1�967 1�950 1�969 1�960
Conn. 4�483 4/515 4�688 3�735 3�265 3�358 2�841

1074 Red. 0�004 0�007 0�050 0�092 0�107 0�114 0�164
Comp. 2�264 2�312 2�179 2�078 2�032 2�031 1�989
Conn. 10�01 6�952 5�051 3�571 3�127 2�688 2�311

1076 Red. 0�003 0�004 0�012 0�058 0�085 0�101 0�192
Comp. 2�327 2�270 2�082 2�057 2�039 2�021 1�978
Conn. 9�337 5�585 4�000 3�120 2�899 2�566 2�266

1078 Red. 0�002 0�004 0�012 0�066 0�084 0�091 0�184
Comp. 2�317 2�250 2�076 2�047 2�029 2�009 1�967
Conn. 9�417 5�591 3�863 3�183 2�882 2�539 2�249
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We see that also for the convection±diffusion equation we get the best reduction rates �r < 0�1, for

some a even below 0�01) for a4 0�15, independent of l. However, for very small a and especially

small l the connectivity is worse than for larger values of a. Note that the recirculating regions do not

effect the convergence numbers.

Moreover, we consider the dependence of the convergence rate for the transport equation on the

number of obstacles and the diffusion coef®cient. Therefore we again choose the domain with cubic

obstacles as shown in Figure 3 and set the AMG parameter a � 0�05. As we can see in Table VIII, the

convergence rates do not vary very much for a ®xed diffusion coef®cient and different numbers of

obstacles. Interestingly, the rates become better for smaller diffusion coef®cients, but even for l � 1

they are still quite good.

Equivalent results are obtained if we consider the dependence of the reduction rates for the

transport equation on the grid size and the diffusion coef®cient (see Table IX).

4.4. Full Navier±Stokes solver

Now we compare the solution process of the Navier±Stokes equations by the explicit and the

SMAC semi-implicit scheme using AMG for the computation of the initial velocity ®eld, for the

Table VII. Dependence of reduction rate on diffusion parameter l and a; transport
equation, backward-facing step, 3D

l a � 1� 10ÿ4 0�01 0�05 0�25 0�45 0�85

1 0�106 0�097 0�125 0�135 0�470 0�624
1072 0�027 0�027 0�030 0�221 0�235 0�364
1074 0�002 0�008 0�034 0�108 0�124 0�142
1076 5� 10ÿ4 0�005 0�036 0�105 0�115 0�135
1078 6� 10ÿ4 0�005 0�037 0�103 0�111 0�135

Table VIII. Dependence of reduction rate on number of obstacles and l; transport
equation, 2D, a � 0�05; 256� 64 cells

Obstacles l � 1 1072 1074 1076 1078 10710

0 0�053 0�047 0�077 0�0008 0�0007 0�0007
1 0�077 0�046 0�065 0�025 0�027 0�027
262 0�086 0�030 0�063 0�051 0�053 0�057
464 0�097 0�038 0�054 0�036 0�027 0�023
868 0�133 0�049 0�071 0�033 0�027 0�027

16616 0�147 0�048 0�060 0�057 0�031 0�031

Table IX. Dependence of reduction rate on grid size and l; transport equation, 2D,
a � 0�05, one obstacle

Grid l � 1 1072 1074 1076 1078 10710

64664 0�047 0�013 0�027 0�013 0�013 0�014
128632 0�069 0�038 0�022 0�025 0�025 0�025
256664 0�077 0�046 0�065 0�025 0�027 0�027
5126128 0�077 0�067 0�079 0�079 0�033 0�033
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pressure in the explicit scheme and the pressure correction as the tentative velocities in the semi-

implicit scheme. Here we also applied the above-mentioned adaptive set-up strategy.

As test problem we consider the ¯ow around an obstacle at Re � 20 and use a mesh with 220641

cells in 2D and 60612612 cells in 3D. We run our programme until t � 15 was reached. We

stopped the iterations if the norm of the residual was below 1076. The explicit time-stepping scheme

becomes unstable for time step sizes dt > 0�014 in 2D and dt > 0�051 in 3D, whereas the semi-

implicit code still shows good results for dt � 0�5 in both 2D and 3D. However, we see in Tables X

and XI that the time spent on the computation of one time step in the semi-implicit code is much

larger than for the explicit code. This is due to the time which must be spent on the set-up phase.

Nevertheless, because of the large number of allocation and comparison steps, the time spent on this

phase depends a lot on the hardware platform available.*

The time spent for the semi-implicit code can be reduced if we use the adaptive set-up strategy.

Here we performed a new set-up step only if the number of iterations in the previous time step was

greater than or equal to the given value tolit. Otherwise, the coarse grid correction computed with the

coarse grid sequence of the previous time step is still good enough to reduce the error in the new time

step ef®ciently. As we see in Tables X and XI, there are dramatic differences in the computing times

for dt � 0�05 and tolit � 1 (set-up in every time step) and tolit � 4 (where only one set-up step is

needed for each momentum equation), whereas the number of iterations is not much larger.

Thus the semi-implicit algorithm using adaptive set-up is quite ef®cient compared with the explicit

algorithm, because the size of the time step is not so restricted. We assume that the difference is more

severe for ®ner grids, but here we must also mention that the memory needed for the semi-implicit

algorithm is much larger, because the matrices for the momentum equations including the coarse grid

operators must be stored.

* We used an ~HP 9000=712 workstation.

Table X. Number of set-up steps, number of iterations and overall computation time for Navier±Stokes solver;
Re � 20, 2D

Scheme tolit dt Time steps u-Set-up v-Set-up u-Iter. v-Iter. Comp. time

Explicit Ð 0�01 1500 Ð Ð Ð Ð 14 min 05�25 s

Semi-implicit 4 0�01 1500 1 1 2226 1976 99 min 06�72 s

Semi-implicit 4 0�02 750 1 1 1230 1098 50 min 28�67 s

Semi-implicit 1 0�05 300 300 300 514 459 10 min 53�13 s
4 0�05 300 1 1 560 483 23 min 22�48 s

Semi-implicit 4 0�10 150 3 3 293 257 12 min 40�28 s

Semi-implicit 3 0�20 75 23 43 174 194 17 min 05�46 s
4 0�20 75 4 4 188 199 8 min 36�73 s
5 0�20 75 2 2 213 209 8 min 11�94 s

Semi-implicit 3 0�50 30 30 30 94 92 11 min 39�24 s
4 0�50 30 9 6 99 95 5 min 51�10 s
5 0�50 30 5 4 109 104 5 min 06�77 s

10 0�50 30 2 2 149 130 4 min 51�65 s
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Table XI. Number of set-up steps, number of iterations and overall computation time for Navier±Stokes solver; Re � 20, 3D

Scheme tolit dt Time steps u-Set-up v-Set-up w-Set-up u-Iter� v-Iter. w-Iter. Comp. time

Explicit Ð 0�03 500 Ð Ð Ð Ð Ð Ð 1 h 00 min 57�40 s

Semi-implicit 4 0�03 500 1 1 1 900 836 724 2 h 17 min 6�40 s

Semi-implicit 4 0�06 250 1 1 1 497 479 423 1 h 16 min 22�69 s

Semi-implicit 1 0�10 150 150 150 150 308 286 242 10 h 16 min 43�39 s
4 0�10 150 3 2 1 316 305 279 0 h 55 min 16�78 s

Semi-implicit 3 0�20 75 35 30 15 182 169 142 2 h 05 min 17�56 s
4 0�20 75 7 4 2 187 177 157 0 h 40 min 57�27 s
5 0�20 75 2 2 1 202 185 166 0 h 32 min 20�19 s

Semi-implicit 3 0�50 30 30 30 29 110 119 92 1 h 55 min 07�15 s
4 0�50 30 18 27 4 110 119 94 1 h 04 min 36�13 s
5 0�50 30 4 3 2 127 124 114 0 h 23 min 01�20 s

10 0�50 30 2 2 2 140 137 119 0 h 19 min 45�11 s
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4.5. Two other problems with complicated domains

Finally, we present some results of two other problems with complicated geometries, namely the

¯ow through a river system, here the delta of the Ganges in Bangladesh,* and the ¯ow through a

porous medium on a microscale level.

In Figures 5 and 7 we show the geometric structure of the computational domains and the

stationary velocity ®elds. For the Ganges example we use in¯ow conditions at the ®ve branches at the

top. For the porous medium example we use in¯ow on the left and out¯ow on the right.

Figures 6 and 8 show the propagation in time of a chemical pollution modelled by the transport

equation (21). In the Ganges example the permanent source of pollution is situated at the top of the

second branch from the left. In the porous medium example the pollution enters at the middle of the

left boundary.

The convergence properties are in the same range as for the test problems reported above.

* Note that this two-dimensional calculation is not realistic at all. First, the resolution of the domain is far too coarse; second,
the third dimension, i.e. the deepness of the river arms, is not involved, which in¯uences the computed ¯ow velocity; third,
realistic in¯ow and out¯ow conditions are not known. This is only an example for complicated geometries.

Figure 5. Ganges delta; velocity plot
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Figure 6. Pollution transport in Ganges delta; l � 4�6� 10ÿ11

Figure 7. Porous medium; velocity plot
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5. CONCLUSIONS

In this paper we considered the application of algebraic multigrid methods to the Poisson equation

and the convection±diffusion equation in complicated geometries. Both equations arise in the

numerical solution of the Navier±Stokes equations using explicit or semi-implicit time discretization.

For equations in complicated geometries and for convection-dominated problems the convergence

rates of standard multigrid methods usually deteriorate. In several numerical experiments we

demonstrated that the application of AMG leads to robust and ef®cient algorithms, especially for a

proper choice of the AMG parameter a which controls the coarsening process. However, the

dependence of the convergence rate on a is not yet fully understood. Moreover, a modi®cation of the

algorithm for Neumann boundary conditions might improve the convergence rates for the pressure

equation.

Furthermore, our experiments show that an explicit time-stepping scheme, where we have a strong

restriction on the time step size, can still compete with the semi-implicit algorithms in terms of run

time. This is due to the large amount of time spent on the AMG set-up phases.

However, we conclude that the semi-implicit time discretization is superior for ®ner grids where

the time step size in the explicit scheme must be reduced more and more to preserve stability. This

holds especially for stationary problems, where we can apply an adaptive set-up strategy in which the

set-up is not done in every time step but only if the convergence rate becomes worse than a prescribed

value.
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Figure 8. Pollution transport in porous medium; l � 10ÿ4
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